Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1964031

ABSTRACT

Aerosol transmission constitutes one of the major transmission routes of the SARS-CoV-2 pathogen. Due to the pathogen's properties, research on its airborne transmission has some limitations. This paper focuses on silica nanoparticles (SiO2) of 40 and 200 nm sizes as the physicochemical markers of a single SARS-CoV-2 particle enabling experiments on the transmission of bioaerosols in public spaces. Mixtures of a determined silica concentration were sprayed on as an aerosol, whose particles, sedimented on dedicated matrices, were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Since it was not possible to quantitatively identify the markers based on the obtained images, the filters exposed with the AirSampler aspirator were analyzed based on inductively coupled plasma optical emission spectroscopy (ICP-OES). The ICP-OES method enabled us to determine the concentration of silica after extracting the marker from the filter, and consequently to estimate the number of markers. The developed procedure opens up the possibility of the quantitative estimation of the spread of the coronavirus, for example in studies on the aerosol transmission of the pathogen in an open environment where biological markers-surrogates included-cannot be used.


Subject(s)
COVID-19 , Nanoparticles , Aerosols/chemistry , Humans , Nanoparticles/chemistry , SARS-CoV-2 , Silicon Dioxide/chemistry
2.
ACS Biomater Sci Eng ; 8(6): 2553-2563, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1860278

ABSTRACT

Delivering medication to the lungs via nebulization of pharmaceuticals is a noninvasive and efficient therapy route, particularly for respiratory diseases. The recent worldwide severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic urges the development of such therapies as an effective alternative to vaccines. The main difficulties in using inhalation therapy are the development of effective medicine and methods to stabilize the biological molecules and transfer them to the lungs efficiently following nebulization. We have developed a high-affinity angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD-62) that can be used as a medication to inhibit infection with SARS-CoV-2 and its variants. In this study, we established a nebulization protocol for drug delivery by inhalation using two commercial vibrating mesh (VM) nebulizers (Aerogen Solo and PARI eFlow) that generate similar mist size distribution in a size range that allows efficient deposition in the small respiratory airway. In a series of experiments, we show the high activity of RBD-62, interferon-α2 (IFN-α2), and other proteins following nebulization. The addition of gelatin significantly stabilizes the proteins and enhances the fractions of active proteins after nebulization, minimizing the medication dosage. Furthermore, hamster inhalation experiments verified the feasibility of the protocol in pulmonary drug delivery. In short, the gelatin-modified RBD-62 formulation in coordination with VM nebulizer can be used as a therapy to cure SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Gelatin , Aerosols/chemistry , Humans , Lung , SARS-CoV-2
3.
PLoS One ; 16(11): e0257549, 2021.
Article in English | MEDLINE | ID: covidwho-1793615

ABSTRACT

Particulate generation occurs during exercise-induced exhalation, and research on this topic is scarce. Moreover, infection-control measures are inadequately implemented to avoid particulate generation. A laminar airflow ventilation system (LFVS) was developed to remove respiratory droplets released during treadmill exercise. This study aimed to investigate the relationship between the number of aerosols during training on a treadmill and exercise intensity and to elucidate the effect of the LFVS on aerosol removal during anaerobic exercise. In this single-center observational study, the exercise tests were performed on a treadmill at Running Science Lab in Japan on 20 healthy subjects (age: 29±12 years, men: 80%). The subjects had a broad spectrum of aerobic capacities and fitness levels, including athletes, and had no comorbidities. All of them received no medication. The exercise intensity was increased by 1-km/h increments until the heart rate reached 85% of the expected maximum rate and then maintained for 10 min. The first 10 subjects were analyzed to examine whether exercise increased the concentration of airborne particulates in the exhaled air. For the remaining 10 subjects, the LFVS was activated during constant-load exercise to compare the number of respiratory droplets before and after LFVS use. During exercise, a steady amount of particulates before the lactate threshold (LT) was followed by a significant and gradual increase in respiratory droplets after the LT, particularly during anaerobic exercise. Furthermore, respiratory droplets ≥0.3 µm significantly decreased after using LFVS (2120800±759700 vs. 560 ± 170, p<0.001). The amount of respiratory droplets significantly increased after LT. The LFVS enabled a significant decrease in respiratory droplets during anaerobic exercise in healthy subjects. This study's findings will aid in exercising safely during this pandemic.


Subject(s)
Air Conditioning/methods , COVID-19/prevention & control , Exercise/physiology , Particulate Matter/chemistry , Adult , Aerosols/chemistry , Air Filters , Anaerobic Threshold/physiology , COVID-19/metabolism , Exercise Test/methods , Exhalation/physiology , Female , Heart Rate/physiology , Humans , Japan , Lactic Acid/metabolism , Male , Oxygen Consumption/physiology , Respiration , Respiratory System/physiopathology , Running/physiology , SARS-CoV-2/pathogenicity , Ventilation/methods
4.
Chem Res Toxicol ; 34(10): 2169-2179, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1461948

ABSTRACT

The outbreak of e-cigarette or vaping product use-associated lung injury (EVALI) has been cause for concern to the medical community, particularly given that this novel illness has coincided with the COVID-19 pandemic, another cause of severe pulmonary illness. Though cannabis e-cigarettes tainted with vitamin E acetate were primarily associated with EVALI, acute lung injuries stemming from cannabis inhalation were reported in the literature prior to 2019, and it has been suggested that cannabis components or additives other than vitamin E acetate may be responsible. Despite these concerning issues, novel cannabis vaporizer ingredients continue to arise, such as Δ8-tetrahydrocannabinol, Δ10-tetrahydrocannabinol, hexahydrocannabinol, and cannabichromene. In order to address cannabis e-cigarette safety and vaping in an effective manner, we provide a comprehensive knowledge of the latest products, delivery modes, and ingredients. This perspective highlights the types of cannabis vaping modalities common to the United States cannabis market, with special attention to cartridge-type cannabis e-cigarette toxicology and their involvement in the EVALI outbreak, in particular, acute lung injurious responses. Novel ingredient chemistry, origins, and legal statuses are reviewed, as well as the toxicology of known cannabis e-cigarette aerosol components.


Subject(s)
Cannabis/chemistry , Lung Injury/etiology , Marijuana Smoking/adverse effects , Plant Extracts/chemistry , Aerosols/chemistry , Aerosols/toxicity , Cannabis/metabolism , Dronabinol/chemistry , Dronabinol/toxicity , Electronic Nicotine Delivery Systems , Humans , Plant Extracts/toxicity , Vitamin E/chemistry
5.
ACS Nano ; 14(7): 9188-9200, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-1387153

ABSTRACT

Filtration efficiency (FE), differential pressure (ΔP), quality factor (QF), and construction parameters were measured for 32 cloth materials (14 cotton, 1 wool, 9 synthetic, 4 synthetic blends, and 4 synthetic/cotton blends) used in cloth masks intended for protection from the SARS-CoV-2 virus (diameter 100 ± 10 nm). Seven polypropylene-based fiber filter materials were also measured including surgical masks and N95 respirators. Additional measurements were performed on both multilayered and mixed-material samples of natural, synthetic, or natural-synthetic blends to mimic cloth mask construction methods. Materials were microimaged and tested against size selected NaCl aerosol with particle mobility diameters between 50 and 825 nm. Three of the top five best performing samples were woven 100% cotton with high to moderate yarn counts, and the other two were woven synthetics of moderate yarn counts. In contrast to recently published studies, samples utilizing mixed materials did not exhibit a significant difference in the measured FE when compared to the product of the individual FE for the components. The FE and ΔP increased monotonically with the number of cloth layers for a lightweight flannel, suggesting that multilayered cloth masks may offer increased protection from nanometer-sized aerosol with a maximum FE dictated by breathability (i.e., ΔP).


Subject(s)
Coronavirus Infections/prevention & control , Masks/standards , Pandemics/prevention & control , Personal Protective Equipment/standards , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Textiles/standards , Aerosols/chemistry , Betacoronavirus/pathogenicity , COVID-19 , Filtration , Humans , Masks/virology , Nanoparticles/chemistry , Nanoparticles/virology , Personal Protective Equipment/virology , Respiratory Protective Devices/virology , SARS-CoV-2 , Textiles/adverse effects , Textiles/virology
6.
PLoS One ; 16(8): e0255533, 2021.
Article in English | MEDLINE | ID: covidwho-1374144

ABSTRACT

Dental procedures produce a large amount of spatter and aerosols that create concern for the transmission of airborne diseases, such as Covid-19. This study established a methodology with the objective of evaluating new associated strategies to reduce the risk of cross-transmission in a health environment by simulating spread of potentially contaminated dispersion particles (PCDP) in the environment. This crossover study, was conducted in a school clinic environment (4 clinics containing 12 dental chairs each). As a positive control group (without barriers), 12 professionals activated at the same time the turbine of dental drill, for one minute, with a bacterial solution (Lactobacillus casei Shirota, 1.5x108 CFU/mL), which had been added in the cooling reservoir of the dental equipment. In the experimental groups, the professionals made use of; a) an individual biosafety barrier in dentistry (IBBD) which consists of a metal support covered by a disposable PVC film barrier; b) a Mobile Unit of Disinfection by Ultraviolet-C, consisting of 8 UV lamps-C of 95W, of 304µW/cm2 of irradiance each, connected for 15 minutes (UV-C) and; c) the association between the two methods (IBBD + UV-C). In each clinic, 56 Petri dishes containing MRS agar were positioned on the lamps, benches and on the floor. In addition, plates were placed prior to each test (negative control group) and plates were also placed in the corridor that connects the four clinics. In the groups without barrier and IBBD + UV-C the passive air microorganisms in Petri dishes was also evaluated at times of 30, 60, 90 and 120 minutes after the end of the dental's drill activation. The mean (standard deviation) of CFU of L. casei Shirota for the positive control group was 3905 (1521), while in the experimental groups the mean using the IBBD was 940 (466) CFU, establishing a reduction on average, of 75% (p<0.0001). For the UV-C group, the mean was 260 (309) CFU and the association of the use of IBBD + UV-C promoted an overall average count of 152 (257) CFU, establishing a reduction on average of 93% and 96%, respectively (p<0.0001). Considering these results and the study model used, the individual biosafety barrier associated with UV-C technology showed to be efficient strategies to reduce the dispersion of bioaerosols generated in an environment with high rate of PCDP generation and may be an alternative for the improvement of biosafety in different healthy environment.


Subject(s)
Aerosols/chemistry , Disinfection/methods , Air Microbiology , Dental Clinics , Disinfection/instrumentation , Humans , Lacticaseibacillus casei/growth & development , Lacticaseibacillus casei/radiation effects , Ultraviolet Rays
7.
Sci Rep ; 11(1): 16051, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1345585

ABSTRACT

With an increasing body of evidence that SARS-CoV-2 is an airborne pathogen, droplet character formed during speech, coughs, and sneezes are important. Larger droplets tend to fall faster and are less prone to drive the airborne transmission pathway. Alternatively, small droplets (aerosols) can remain suspended for long time periods. The small size of SARS-CoV-2 enables it to be encapsulated in these aerosols, thereby increasing the pathogen's ability to be transmitted via airborne paths. Droplet formation during human respiratory events relates to airspeed (speech, cough, sneeze), fluid properties of the saliva/mucus, and the fluid content itself. In this work, we study the fluidic drivers (fluid properties and content) and their influence on factors relating to transmissibility. We explore the relationship between saliva fluid properties and droplet airborne transmission paths. Interestingly, the natural human response appears to potentially work with these drivers to mitigate pathogen transmission. In this work, the saliva is varied using two approaches: (1) modifying the saliva with colloids that increase the viscosity/surface tension, and (2) stimulating the saliva content to increased/decreased levels. Through modern experimental and numerical flow diagnostic methods, the character, content, and exposure to droplets and aerosols are all evaluated. The results indicate that altering the saliva properties can significantly impact the droplet size distribution, the formation of aerosols, the trajectory of the bulk of the droplet plume, and the exposure (or transmissibility) to droplets. High-fidelity numerical methods used and verify that increased droplet size character enhances droplet fallout. In the context of natural saliva response, we find previous studies indicating natural human responses of increased saliva viscosity from stress and reduced saliva content from either stress or illness. These responses both favorably correspond to reduced transmissibility. Such a finding also relates to potential control methods, hence, we compared results to a surgical mask. In general, we find that saliva alteration can produce fewer and larger droplets with less content and aerosols. Such results indicate a novel approach to alter SARS-CoV-2's transmission path and may act as a way to control the COVID-19 pandemic, as well as influenza and the common cold.


Subject(s)
COVID-19/transmission , SARS-CoV-2/isolation & purification , Saliva/virology , Aerosols/chemistry , Air Microbiology , Colloids/chemistry , Cough , Humans , Pandemics , Saliva/chemistry , Sneezing , Viscosity
8.
Sci Rep ; 11(1): 14477, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1310813

ABSTRACT

Air quality in urban areas and megacities is dependent on emissions, physicochemical process and atmospheric conditions in a complex manner. The impact on air quality metrics of the COVID-19 lockdown measures was evaluated during two periods in Athens, Greece. The first period involved stoppage of educational and recreational activities and the second severe restrictions to all but necessary transport and workplace activities. Fresh traffic emissions and their aerosol products in terms of ultrafine nuclei particles and nitrates showed the most significant reduction especially during the 2nd period (40-50%). Carbonaceous aerosol both from fossil fuel emissions and biomass burning, as well as aging ultrafine and accumulation mode particles showed an increase of 10-20% of average before showing a decline (5 to 30%). It is found that removal of small nuclei and Aitken modes increased growth rates and migration of condensable species to larger particles maintaining aerosol volume.


Subject(s)
Aerosols/analysis , Air Pollution/analysis , Nitrates/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Aerosols/chemistry , Air Pollutants/analysis , COVID-19 , Environment , Environmental Monitoring , Greece , Humans , SARS-CoV-2 , Time Factors
9.
PLoS One ; 16(4): e0250213, 2021.
Article in English | MEDLINE | ID: covidwho-1197385

ABSTRACT

PURPOSE: To investigate the effectiveness of aerosol clearance using an aerosol box, aerosol bag, wall suction, and a high-efficiency particulate air (HEPA) filter evacuator to prevent aerosol transmission. METHODS: The flow field was visualized using three protective device settings (an aerosol box, and an aerosol bag with and without sealed working channels) and four suction settings (no suction, wall suction, and a HEPA filter evacuator at flow rates of 415 liters per minute [LPM] and 530 LPM). All 12 subgroups were compared with a no intervention group. The primary outcome, aerosol concentration, was measured at the head, trunk, and foot of a mannequin. RESULTS: The mean aerosol concentration was reduced at the head (p < 0.001) but increased at the feet (p = 0.005) with an aerosol box compared with no intervention. Non-sealed aerosol bags increased exposure at the head and trunk (both, p < 0.001). Sealed aerosol bags reduced aerosol concentration at the head, trunk, and foot of the mannequin (p < 0.001). A sealed aerosol bag alone, with wall suction, or with a HEPA filter evacuator reduced the aerosol concentration at the head by 7.15%, 36.61%, and 84.70%, respectively (99.9% confidence interval [CI]: -4.51-18.81, 27.48-45.73, and 78.99-90.40); trunk by 70.95%, 73.99%, and 91.59%, respectively (99.9% CI: 59.83-82.07, 52.64-95.33, and 87.51-95.66); and feet by 69.16%, 75.57%, and 92.30%, respectively (99.9% CI: 63.18-75.15, 69.76-81.37, and 88.18-96.42), compared with an aerosol box alone. CONCLUSIONS: As aerosols spread, an airtight container with sealed working channels is effective when combined with suction devices.


Subject(s)
Aerosols/chemistry , Dust/prevention & control , Suction/methods , Air Filters , Ventilators, Negative-Pressure
10.
PLoS One ; 16(4): e0249586, 2021.
Article in English | MEDLINE | ID: covidwho-1170005

ABSTRACT

Medical procedures that produce aerosolized particles are under great scrutiny due to the recent concerns surrounding the COVID-19 virus and increased risk for nosocomial infections. For example, thoracostomies, tracheotomies and intubations/extubations produce aerosols that can linger in the air. The lingering time is dependent on particle size where, e.g., 500 µm (0.5 mm) particles may quickly fall to the floor, while 1 µm particles may float for extended lengths of time. Here, a method is presented to characterize the size of <40 µm to >600 µm particles resulting from surgery in an operating room (OR). The particles are measured in-situ (next to a patient on an operating table) through a 75mm aperture in a ∼400 mm rectangular enclosure with minimal flow restriction. The particles and gasses exiting a patient are vented through an enclosed laser sheet while a camera captures images of the side-scattered light from the entrained particles. A similar optical configuration was described by Anfinrud et al.; however, we present here an extended method which provides a calibration method for determining particle size. The use of a laser sheet with side-scattered light provides a large FOV and bright image of the particles; however, the particle image dilation caused by scattering does not allow direct measurement of particle size. The calibration routine presented here is accomplished by measuring fixed particle distribution ranges with a calibrated shadow imaging system and mapping these measurements to the in-situ imaging system. The technique used for generating and measuring these particles is described. The result is a three-part process where 1) particles of varying sizes are produced and measured using a calibrated, high-resolution shadow imaging method, 2) the same particle generators are measured with the in-situ imaging system, and 3) a correlation mapping is made between the (dilated) laser image size and the measured particle size. Additionally, experimental and operational details of the imaging system are described such as requirements for the enclosure volume, light management, air filtration and control of various laser reflections. Details related to the OR environment and requirements for achieving close proximity to a patient are discussed as well.


Subject(s)
Aerosols/chemistry , Operating Rooms/organization & administration , Particle Size , COVID-19/prevention & control , COVID-19/virology , Humans
11.
Sci Rep ; 11(1): 2508, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1127169

ABSTRACT

The rapid spread of the SARS-CoV-2 in the COVID-19 pandemic had raised questions on the route of transmission of this disease. Initial understanding was that transmission originated from respiratory droplets from an infected host to a susceptible host. However, indirect contact transmission of viable virus by fomites and through aerosols has also been suggested. Herein, we report the involvement of fine indoor air particulates with a diameter of ≤ 2.5 µm (PM2.5) as the virus's transport agent. PM2.5 was collected over four weeks during 48-h measurement intervals in four separate hospital wards containing different infected clusters in a teaching hospital in Kuala Lumpur, Malaysia. Our results indicated the highest SARS-CoV-2 RNA on PM2.5 in the ward with number of occupants. We suggest a link between the virus-laden PM2.5 and the ward's design. Patients' symptoms and numbers influence the number of airborne SARS-CoV-2 RNA with PM2.5 in an enclosed environment.


Subject(s)
COVID-19/transmission , Environmental Monitoring/methods , SARS-CoV-2/chemistry , Aerosols/analysis , Aerosols/chemistry , Air Microbiology , Air Pollution, Indoor , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Fomites/microbiology , Fomites/statistics & numerical data , Hospitals , Humans , Malaysia/epidemiology , Pandemics , Particulate Matter/analysis , RNA, Viral
12.
Sci Rep ; 11(1): 3953, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1087496

ABSTRACT

Contact and inhalation of virions-carrying human aerosols represent the primary transmission pathway for airborne diseases including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Relative to sneezing and coughing, non-symptomatic aerosol-producing activities such as speaking are highly understudied. The dispersions of aerosols from vocalization by a human subject are hereby quantified using high-speed particle image velocimetry. Syllables of different aerosol production rates were tested and compared to coughing. Results indicate aerosol productions and penetrations are not correlated. E.g. 'ti' and 'ma' have similar production rates but only 'ti' penetrated as far as coughs. All cases exhibited a rapidly penetrating "jet phase" followed by a slow "puff phase." Immediate dilution of aerosols was prevented by vortex ring flow structures that concentrated particles toward the plume-front. A high-fidelity assessment of risks to exposure must account for aerosol production rate, penetration, plume direction and the prevailing air current.


Subject(s)
Aerosols/analysis , COVID-19/transmission , SARS-CoV-2/chemistry , Speech/physiology , Adult , Aerosols/chemistry , COVID-19/virology , Cough , Humans , Male , Particle Size , Rheology/methods , SARS-CoV-2/pathogenicity , Sneezing , Verbal Behavior/physiology
13.
Phys Rev Lett ; 126(3): 034502, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1060608

ABSTRACT

To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed. We found that, because small droplets (with initial diameter of 10 µm) are swept by turbulent eddies in the expelled humid puff, their lifetime gets extended by a factor of more than 30 times as compared to what is suggested by the classical picture by Wells, for 50% relative humidity. With increasing ambient relative humidity the extension of the lifetimes of the small droplets further increases and goes up to around 150 times for 90% relative humidity, implying more than 2 m advection range of the respiratory droplets within 1 sec. Employing Lagrangian statistics, we demonstrate that the turbulent humid respiratory puff engulfs the small droplets, leading to many orders of magnitude increase in their lifetimes, implying that they can be transported much further during the respiratory events than the large ones. Our findings provide the starting points for larger parameter studies and may be instructive for developing strategies on optimizing ventilation and indoor humidity control. Such strategies are key in mitigating the COVID-19 pandemic in the present autumn and upcoming winter.


Subject(s)
Body Fluids/chemistry , Body Fluids/virology , COVID-19/transmission , Models, Biological , Aerosols/chemistry , Air Microbiology , Air Movements , COVID-19/virology , Computer Simulation , Disease Transmission, Infectious , Exhalation , Humans , Pandemics , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification
14.
J Glaucoma ; 29(11): 1001-1005, 2020 11.
Article in English | MEDLINE | ID: covidwho-990865

ABSTRACT

PRECIS: Aerosols generated by a noncontact tonometer (NCT) were quantified. There was a positive correlation between aerosols and intraocular pressure (IOP), and the concentration of aerosols beside the air jet port was the highest. PURPOSE: To investigate the effects of IOP on the aerosol density generated during the use of an NCT and provide references and suggestions for daily protection of ophthalmic medical staff during the coronavirus disease-19 (COVID-19) outbreak. OBJECTIVE AND METHODS: This cross-sectional clinical trial included 214 eyes of 140 patients from a hospital in Wenzhou city, Zhejiang Province. All subjects' IOPs were measured by an NCT (39 eyes with low IOP, 90 eyes with normal IOP, 37 eyes with moderately high IOP, and 48 eyes with very high IOP) between March 7 and June 17, 2020. The density of particulate matter (PM) 2.5 and PM10 generated during the process of IOP measurement with an NCT was analyzed. IOP values were recorded simultaneously. The aerosols generated during different IOP measurements were plotted in scatter plots. RESULTS: PM2.5 was generated more at the air jet port of the tonometer during the process of IOP measurement (H=2.731, P=0.019). Larger quantities of PM2.5 and PM10 were generated when the IOP was higher, and these differences were statistically significant (PM2.5: H=119.476, P<0.001; PM10: H=160.801, P<0.001). Linear correlation analysis with one variable demonstrated that IOP had significantly positive correlations with PM2.5 (r=0.756, P<0.001) and PM10 (r=0.864, P<0.001). CONCLUSIONS: Aerosols can be generated while using an NCT to measure IOP, and aerosols and IOP are positively correlated. Patients with moderately high IOP or very high IOP tend to generate more aerosols during the IOP measurement. The concentration of aerosols beside the air jet port was the highest.


Subject(s)
Aerosols/chemistry , Betacoronavirus , Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Intraocular Pressure/physiology , Pneumonia, Viral/transmission , Tears/chemistry , Tonometry, Ocular/instrumentation , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
15.
PLoS One ; 15(10): e0240398, 2020.
Article in English | MEDLINE | ID: covidwho-868677

ABSTRACT

Wearing face masks is highly recommended to prevent SARS-CoV-2 transmission in health care workers and for the general public. The demand for high quality face masks has seen an upsurge in the recent times, leading to exploration of alternative economic and easily available options, without compromising on the quality. Particle removal from air in terms of capture efficiency of the filter media or the face mask is a crucial parameter for testing and quality assurance. Short-term reusability of the face masks is also an important aspect as the demand for masks will potentially outstrip the supply in future. Sterilization Wraps, which are used to wrap sterile surgical instruments, have shown a promising performance in terms of removal of particles from air. In this study, we evaluate the particle filtration characteristics of face masks made of 2 different metric weights [45 and 60 gram per square metre (GSM)] respectively, using locally available Sterilization Wraps. The aerosol filtration characteristics were also studied after sterilisation by different techniques such as heat with 50% humidity (thermal treatment), ethylene oxide (ETO), steam and radiation dose of 30kGy. We found that 60 GSM face mask had particle capture efficiency of 94% for total particles greater than 0.3 microns and this capture efficiency was maintained even after sterilisation with ETO and thermal treatment. The cost of producing these masks was 30 US cents/mask at our institute. Our study suggests that sterilization wrap material made of non-woven polypropylene spunbond-meltblown-spunbond (SMS) fibres could be an appropriate readily available inexpensive material for making face masks or N95 respirators.


Subject(s)
Masks/standards , Particle Size , Personal Protective Equipment/standards , Textiles/standards , Aerosols/chemistry , Disinfection/methods , Disinfection/standards , Ethylene Oxide/chemistry , Filtration/standards , Hot Temperature , Humidity , Polypropylenes/chemistry
16.
PLoS One ; 15(10): e0240421, 2020.
Article in English | MEDLINE | ID: covidwho-841648

ABSTRACT

OBJECTIVE: To evaluate the microbial loading in aerosols produced after air-puff by non-contact tonometer (NCT) as well as the effect of alcohol disinfection on the inhibition of microbes and thus to provide suggestions for the prevention and control of COVID-19 in ophthalmic departments of hospitals or clinics during the great pandemics. METHODS: A cross-sectional study was carried out in this study. A NIDEK NCT was used for intraocular pressure (IOP) measurement for patients who visited Department of Ophthalmology in Qilu Hospital of Shandong University during March 18-25 2020. After ultra-violate (UV) light disinfection, the room air was sampled for 5 minutes. Before and after alcohol disinfection, the air samples and nozzle surface samples were respectively collected by plate exposure method and sterile moist cotton swab technique after predetermined times of NCT air-puff. Microbial colony counts were calculated after incubation for 48 hours. Finally, mass spectrometry was performed for the accurate identification of microbial species. RESULTS: Increased microbial colonies were detected from air samples close to NCT nozzle after air-puff compared with air samples at a distance of 1 meter from the nozzle (p = 0.001). Interestingly, none microbes were detected on the surface of NCT nozzle. Importantly, after 75% alcohol disinfection less microbes were detected in the air beside the nozzle (p = 0.003). Microbial species identification showed more than ten strains of microbes, all of which were non-pathogenic. CONCLUSION: Aerosols containing microbes were produced by NCT air-puff in the ophthalmic consultation room, which may be a possible virus transmission route in the department of ophthalmology during the COVID-19 pandemic. Alcohol disinfection for the nozzle and the surrounding air was efficient at decreasing the microbes contained in the aerosols and theoretically this prevention measure could also inhibit the virus. This will give guidance for the prevention of virus transmission and protection of hospital staff and patients.


Subject(s)
Air Microbiology , Alcohols/chemistry , Coronavirus Infections/prevention & control , Disinfectants/chemistry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Tonometry, Ocular/methods , Aerosols/chemistry , Betacoronavirus/physiology , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Hospitals , Humans , Ophthalmology/methods , Pneumonia, Viral/epidemiology , SARS-CoV-2
17.
J Cataract Refract Surg ; 46(9): 1297-1301, 2020 09.
Article in English | MEDLINE | ID: covidwho-780510

ABSTRACT

PURPOSE: To study propensity of aerosol and droplet generation during phacoemulsification using high-speed shadowgraphy and quantify its spread amid COVID-19 pandemic. SETTING: Aerosol and droplet quantification laboratory. DESIGN: Laboratory study. METHODS: In an experimental set-up, phacoemulsification was performed on enucleated goat eyes and cadaveric human corneoscleral rims mounted on an artificial anterior chamber. Standard settings for sculpt and quadrant removal mode were used on Visalis 100 (Carl Zeiss Meditec AG). Microincision and standard phacoemulsification were performed using titanium straight tips (2.2 mm and 2.8 mm in diameter). The main wound incisions were titrated equal to and larger than the sleeve size. High-speed shadowgraphy technique was used to detect the possible generation of any droplets and aerosols. The visualization and quantification of size of the aerosols and droplets along with calculation of their spread were the main outcome measures. RESULTS: In longitudinal phacoemulsification using a peristaltic pump device with a straight tip, no aerosol generation was seen in a closed chamber. In larger wounds, there was a slow leak at the main wound. The atomization of balanced salt solution was observed only when the phacoemulsification tip was completely exposed next to the ocular surface. Under this condition, the nominal size of the droplet was approximately 50 µm, and the maximum calculated spread was 1.3 m. CONCLUSIONS: There was no visible aerosol generation during microincision or standard phacoemulsification. Phacoemulsification is safe to perform in the COVID-19 era by taking adequate precautions against other modes of transmission.


Subject(s)
Aerosols/chemistry , Betacoronavirus , Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Microbubbles , Phacoemulsification/methods , Pneumonia, Viral/transmission , Animals , COVID-19 , Coronavirus Infections/epidemiology , Diagnostic Imaging/methods , Goats , Models, Animal , Ophthalmologists , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
18.
J Glaucoma ; 29(11): 1006-1016, 2020 11.
Article in English | MEDLINE | ID: covidwho-780495

ABSTRACT

PURPOSE: To quantify aerosol and droplets generated during noncontact tonometry (NCT) and assess the spread distance of the same. METHODOLOGY: This was an experimental study on healthy human volunteers (n=8 eyes). In an experimental setup, NCT was performed on eyes (n=8) of human volunteers under normal settings, with a single and 2 drops of lubricant. High-speed shadowgraphy, frontal lighting technique, and fluorescein analysis were used to detect the possible generation of any droplets and aerosols. Mathematical computation of the spread of the droplets was then performed. RESULTS: In a natural setting, there was no droplet or aerosol production. Minimal splatter along with droplet ejection was observed when 1 drop of lubricant was used before NCT. When 2 drops of lubricant were instilled, a significant amount of fluid ejection in the form of a sheet that broke up into multiple droplets was observed. Some of these droplets traversed back to the tonometer. Droplets ranging from 100 to 500 µm in diameter were measured. CONCLUSIONS: There was no droplet generation during NCT performed in a natural setting. However, NCT should be avoided in conditions with high-tear volume (natural or artificial) as it would lead to droplet spread and tactile contamination.


Subject(s)
Aerosols/chemistry , Betacoronavirus , Coronavirus Infections/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Intraocular Pressure/physiology , Pneumonia, Viral/transmission , Tears/chemistry , Tonometry, Ocular/instrumentation , Adolescent , Adult , COVID-19 , Environmental Monitoring , Female , Fluorescein/administration & dosage , Fluorescent Dyes/administration & dosage , Humans , Lubricant Eye Drops/administration & dosage , Male , Optical Imaging , Pandemics , SARS-CoV-2 , Young Adult
19.
Anal Chem ; 92(17): 11543-11547, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-677479

ABSTRACT

Molecular analysis of exhaled breath aerosol (EBA) with simple procedures represents a key step in clinical and point-of-care applications. Due to the crucial health role, a face mask now is a safety device that helps protect the wearer from breathing in hazardous particles such as bacteria and viruses in the air; thus exhaled breath is also blocked to congregate in the small space inside of the face mask. Therefore, direct sampling and analysis of trace constituents in EBA using a face mask can rapidly provide useful insights into human physiologic and pathological information. Herein, we introduce a simple approach to collect and analyze human EBA by combining a face mask with solid-phase microextraction (SPME) fiber. SPME fiber was inserted into a face mask to form SPME-in-mask that covered nose and mouth for in vivo sampling of EBA, and SPME fiber was then coupled with direct analysis in real-time mass spectrometry (DART-MS) to directly analyze the molecular compositions of EBA under ambient conditions. The applicability of SPME-in-mask was demonstrated by direct analysis of drugs and metabolites in oral and nasal EBA. The unique features of SPME-in-mask were also discussed. Our results showed that this method is enabled to analyze volatile and nonvolatile analytes in EBA and is expected to have a significant impact on human EBA analysis in clinical applications. We also hope this method will inspire biomarker screening of some respiratory diseases that usually required wearing of a face mask in daily life.


Subject(s)
Aerosols/chemistry , Biomarkers/analysis , Body Fluids/chemistry , Body Fluids/metabolism , Mass Spectrometry/methods , Organic Chemicals/analysis , Solid Phase Microextraction/methods , Biosensing Techniques , Breath Tests , Exhalation , Humans , Imidazoles/chemistry , In Vitro Techniques , Masks , Metabolomics , Specimen Handling/methods
20.
Eye (Lond) ; 35(4): 1187-1190, 2021 04.
Article in English | MEDLINE | ID: covidwho-615446

ABSTRACT

OBJECTIVE: To assess visible aerosol generation during simulated vitrectomy surgery. METHODS: A model comprising a human cadaveric corneoscleral rim mounted on an artificial anterior chamber was used. Three-port 25 gauge vitrectomy simulated surgery was performed with any visible aerosol production recorded using high-speed 4K camera. The following were assessed: (1) vitrector at maximum cut rate in static and dynamic conditions inside the model, (2) vitrector at air-fluid interface in a physical model, (3) passive fluid-air exchange with a backflush hand piece, (4) valved cannulas under air, and (5) a defective valved cannula under air. RESULTS: No visible aerosol or droplets were identified when the vitrector was used within the model. In the physical model, no visible aerosol or droplets were seen when the vitrector was engaged at the air-fluid interface. Droplets were produced from the opening of backflush hand piece during passive fluid-air exchange. No visible aerosol was produced from the intact valved cannulas under air pressure, but droplets were seen at the beginning of fluid-air exchange when the valved cannula was defective. CONCLUSIONS: We found no evidence of visible aerosol generation during simulated vitrectomy surgery with competent valved cannulas. In the physical model, no visible aerosol was generated by the high-speed vitrector despite cutting at the air-fluid interface.


Subject(s)
Aerosols/chemistry , COVID-19/epidemiology , Microbubbles , SARS-CoV-2 , Vitrectomy , COVID-19/transmission , Communicable Disease Control , Disease Transmission, Infectious , Humans , Patient Simulation
SELECTION OF CITATIONS
SEARCH DETAIL